Total No. of Questions: 09]

[Total No. of Pages: 02

B.Tech. (CE/ECE) (Sem. - 3rd)

ENGINEERING MATHEMATICS-III

SUBJECT CODE: BTAM - 301 (2011 & 2012 Batch)

Paper ID : [A1128]

Time: 03 Hours

Maximum Marks: 60

Instruction to Candidates:

- 1) Section A is **Compulsory** consisting of Ten questions carrying Two marks each.
- 2) Section B contains Five questions carrying Five marks each and students has to attempt any **Four** questions.
- 3) Section C contains Three questions carrying Ten marks each and students has to attempt any Two questions.

Section - A

Q1)

- a) Define saw tooth waveform and find its Fourier series.
- b) State the conditions required to be satisfied for a function to be expressed in terms of Fourier series.
- c) Find Laplace transform of $f(t) = |t-1| + |t+1|, t \ge 0|$.
- d) Find Inverse transform of $\left(\frac{e^{2s}}{(s+1)(s+2)}\right)$
- e) Form the Partial Differential Equation corresponding to $z = f\left(\frac{xy}{z}\right)$.
- f) Solve the partial differential equation $z(p-q) = z^2 + (x+y)^2$, where

$$p = \frac{\partial z}{\partial x}, q = \frac{\partial z}{\partial y}.$$

- g) Find the solution of $x \frac{d^2y}{dx^2} \frac{dy}{dx} + 4x^2y = 0$ in terms of Bessel's function.
- h) State Rodrigue formula and employing it show that $x = P_1(x)$.
- i) Find the poles and residue at each pole of $\frac{1-e^{2z}}{z^4}$.
- j) Find the analytic function whose imaginary part is $e^x \cos y$.

R-2097

Section - B

- **Q2)** Find Fourier series of the function $x \cos x$ in $-\pi \le x \le \pi$.
- Q3) Solve the differential equation by using Laplace transform $\frac{d^2y}{dt^2} + 2\frac{dy}{dt} 2y = 3\cos 3t 11\sin 3t, \text{ given that } y(0) = 0, y'(0) = 0.$
- Q4) Solve the partial differential equation $\frac{\partial^2 z}{\partial y^2} + 2 \frac{\partial^2 z}{\partial x \partial y} + \frac{\partial^2 z}{\partial y^2} = \sin(x y)$.
- **Q5)** Prove that $J_{1/2}(x) = \sqrt{\frac{2}{\pi x}} \cos x$.
- Q6) Prove that $w = \frac{2z+3}{z-4}$ maps the circle $x^2 + y^2 4x = 0$ on to the line 4u + 3 = 0.

Section - C

- Q7) a) Evaluate $\int_{0}^{\infty} \frac{\sin t}{t} dt$ using Laplace transform.
 - b) Find series solution of the function $(1-x^2)\frac{d^3y}{dx^2} 2x\frac{dy}{dx} + 2y = 0$.
- **Q8)** Evaluate $\int_{0}^{2\pi} \frac{d\theta}{a + b\sin\theta}$, |a| > |b| by using contour integration.
- Q9) A tightly stretched string with fixed end points x = 0 and x = l is initially in a position given by $y = y_0 \sin^3 \left(\frac{\pi x}{l}\right)$. If it is released from rest from this position find the displacement y(x, t).