Roll No.

Total No. of Questions: 09]

[Total No. of Pages: 02

B.Tech. (ECE/Electronics & Computer Engg./ ETE) (Sem. - 3rd)

NETWORK ANALYSIS AND SYNTHESIS

SUBJECT CODE: BTEC - 303 (2011 & 2012 Batch)

Paper ID : [A1127]

Time: 03 Hours

Maximum Marks: 60

Instruction to Candidates:

- 1) Section A is **Compulsory** consisting of ten questions carrying two marks each.
- 2) Section B contains Five questions carrying Five marks each and students has to attempt any four questions.
- 3) Section C contains Three questions carrying Ten marks each and students has to attempt any two questions.

Section - A

Q1)

- a) What is meant by the term transients? Draw the transient response of R-L series circuits.
- b) State Reciprocity theorem. Give example.
- c) Classify different types of network elements.
- d) Write the nodal equations for the following circuit.

- e) Explain convolution theorem.
- f) What are composite filters. How they are better than prototype and m-derived filters.
- g) What are transfer functions? Give its significance.
- h) Explain the behavior of an inductor at t = 0 and t = infinity when there is initial current in it.
- i) What is meant by analysis and synthesis of a network.
- j) Differentiate between prototype filter and m-derived filters.

R-1909

Section - B

Q2) Explain time domain response from pole and zero plot. Plot the poles and zeros of a network function on the s-plane.

N(s) = (s + 1)(s + 5)(s + 3 + 2j)(s + 3 - 2j) and check the stability of the system.

Q3) State Thevenin theorem. Find the current flowing in branch AB using thevenin theorem.

Q4) Find the voltage across capacitor C₁.

- **Q5)** Test whether the polynomial $P(s) = S^3 + 4S^2 + 5S + 2$ is hurwitz.
- Q6) Derive the Laplace transform of step, ramp, impulse and unit doublet function.

Section - C

- Q7) Find the first and second Foster forms of the function Z(s) = (s+1)(s+3)/s(s+2)
- Q8) Explain different characteristics of filters. Derive equations of Characteristics impedance, Propagation constant, attenuation and phase shift of T-network.
- Q9) Determine the current i (t) in the given circuit when the switch is closed at t = 0.

XXXX