Roll No.

Total No. of Questions: 09]

[Total No. of Pages: 03

B.Tech. (ECE/ETE) (Sem. - 4th)

PULSE WAVE SHAPING AND SWITCHING

SUBJECT CODE: BTEC - 405 (2011 Batch)

<u>Paper ID</u>: [A1193]

Time: 03 Hours

Maximum Marks: 60

Instruction to Candidates:

- Section A is Compulsory consisting of Ten questions carrying Two marks each.
- 2) Section B contains Five questions carrying Five marks each and students has to attempt any Four questions.
- 3) Section C contains Three questions carrying Ten marks each and students has to attempt any Two questions.

Section - A

Q1)

- a) Define the condition for Low Pass filter to act as a good Integrator.
- b) What is speed-up capacitor used in a multivibrator? Draw circuit diagram.
- c) Explain Tripping points in Schmit trigger.
- d) List the advantages of Emitter Coupled Astable multivibrator over collector coupled.
- e) Connect a diode to a transistor to improve its switching speed. Draw its circuit diagram.
- f) What is the figure of merit of diodes when used in clipper circuit?
- g) Mention the regions of transistor used as switch. How do you come to know that transistor is in saturation region, practically?
- h) Sketch the internal details of probe used in Oscilloscopes.
- i) Draw the ring circuit and sketch output corresponding to an input of square pulse train.
- j) Distinguish between Avalanche break down and Zener break down.

R-2080

Section - B

- Q2) In case of R-L series circuit, derive the expression of output voltage for sinusoidal (A.C.) input voltage.
- Q3) Explain working in detail of collector catching diodes, Commutating capacitor.
- **Q4)** Draw and explain the working of Emitter Coupled Monostable multivibrator? What are its advantages?
- Prove that Gate width (T) of a Collector Coupled Monostable multivibrator is $T = \tau \ln 2$. Symbols have usual meaning.
- Q6) Explain the means/ways to improve the speed response of transistor as a switch.

Section - C

- **Q7)** a) Explain the working of Diode Differential Comparator and derive relation for its output.
 - b) Refer to figure 7(b), A collector coupled monostable multivibrator using n-p-n silicon transistor has the following parameters: $V_{cc} = 12V$, $V_{BB} = 3V$, $R_c = 2K$, $R_1 = R_2 = R = 20K$, $h_{FE} = 30$, $r_{bb} = 200$ and C = 1000 pF. Neglect T_{CBO} .
 - i) Calculate and plot to scale the waveshapes at each base and collector.
 - ii) Find the width of the output pulse.

- Q8) a) Derive the expression of resonance frequency in case of parallel resonance circuit.
 - b) Refer to figure 8(b), for the diode clipping circuit assume that $V_R = 5V$,

R-2080

 $V_i(t)=10 \sin 2\omega t$, and that the diode forward resistance is $R_r=100\Omega$ while $R_\tau=\infty$ and $V_\gamma=0$. Neglect all capacitances. Draw to scale the input and output waveforms and label the maximum and minimum values if (i) $R=100\Omega$, (ii) $R=1 \ K$, (iii) $R=10 \ K$?

- Q9) Write note on the following:
 - a) Attenuator circuits and compensations.
 - b) Symmetrical Triggering in bistable Multivibrators.

