MAY-2014

Roll No. __ Total No. of Questions: 9

B.Tech. (E.C.E.) Sem. 4th

Total no of page-1

Signals & Systems

Subject Code: BTEC 402

Paper id: A-1190

Time: 03 hrs

Instruction to candidates:

- 1. Section-A is compulsory consisting of ten questions carrying two marks each.
- 2. section-B contains five questions carrying five marks each and students have to attempt any four questions.
- 3. Section-C contains three questions carrying Ten marks each and students have to attempt any two questions.

SECTION-A

- Q.1)i) Define LTI Systems.
 - ii) Differentiate a Causal LTI system from a non causal LTI system.
 - iii) Describe the linearity property of Discrete Time Fourier Transform
 - iv) Explain the concept of region of convergence for Z-transform.
 - v) Plot the representation of x[n] = n for all n.
 - vi) Define probability density function.
 - vii) Explain what is Nyquist rate of sampling and what is the importance of this rate in sampling of a continuous signal.
 - viii) Write the mathematical expression for continuous Fourier transform of aperiodic signals.
 - ix) Write the mathematical expression for convolution sum.
 - x) Define memory less systems.

(2X10=20)

- Q.2) Define random variables with the help of an example. Also describe discrete random variables and discrete probability distribution. 5 5
- Q.3) Determine the power and the rms value of $f(t)=C\cos(\omega_0 t + \theta)$.
- Q.4) Find the DTFT of $x[n] = \delta(n-1) + \delta(n+1)$.
- () Find the Z-transform of the unit step sequence x[n] = u[n].
- Q.6) Describe the time-scaling property and time-reversal property of DTFT with the help of one example.

SECTION- C

- Q.7) Describe in detail with diagrammatic explanation impulse train sampling. 10
- Q.8) Find the mathematical expression for trigonometric Fourier series and derive compact trigonometric series from it.
- Q.9) Write the applications of following mathematical tools in communication engineering
 - a) Convolution
 - b) Continuous time Fourier transform
 - c) Discrete time Fourier transform
 - d) Z-Transform

10

5

5

5

10

ì	_	٠	_	_1	
	_	1	٦.	n	