Roll No

Total No of pg: 2

Examination May-2014 Digital Signal Processing Subject Code: BTEC - 502 Paper ID:A-2104

Time: 03 Hrs.

Max. Marks: 60

SECTION - A

- 1. a) List the advantages of Digital Signal Processing
 - b) Check whether the following system is stable, linear, or time-invariant

$$y(x^1 = x(x^2)$$

- c) What is the physical significance of convolution, and correlation? List the applications also.
- d) Find the Z transform of the signal

$$x(x1 = U\left(\frac{x}{2}\right)$$

- e) List Ø prove the "Differentiation in Z-domain" property of Z transform.
- f) For the function, $X(z) = \frac{10}{1 + \frac{1}{2}Z^{-1}}$, $Roc = |Z| > \frac{1}{2}$ compute the DTFT as the corresponding time-domain signal directly, if it exists.
- g) Differentiate FIR filters & IIR filters.
- h) Mathematically Justify, how line as phase condition is achieves in FIR filters.
- i) Differentiate fixed point & floating paint representation of numbers.
- j) What is the difference between DSP processor and microprocessor.

 $(20 \times 2 = 20)$

SECTION - B

2. Determine the response $y(x), x \ge 0$ of the following system

$$y(x1 - 4y(x - 1) + 4y(x - 2) = x(x1 - x(x - 1))$$

When the input is

$$x(n) = (-1)^n U(n)$$

And the initial conditions are y(-1) = y(-2) = 0

- 3. Derive DIF FFT algorithm for 8 point sequence and draw the butterfly diagram.
- 4. Describe different types of finite word length effects present in Digital filters and ways to rectify them, with the help of examples.
- 5. Find the Z-transform of the signal $x(n1 = |n|a^{|n|})$

6. Design a low-pass filter with desired frequency response

$$H_d(w) = \int \frac{\bar{e}^{j3w}}{0} \qquad \frac{-\pi}{2} \le W \le \frac{\pi}{2}$$
$$\frac{\pi}{2} < |W| < \pi$$

Use hanning window with a lengthy 7.

5

SECTION - C

- 7. Describe the Architecture of TMS series processor. Explain Addressing modes, memory structure, Interrupts, and Applications.
- 8. a) Find the inverse Z-transform of

$$X(2) = \frac{1}{1 - 1.5\bar{z}^1 + 0.5\bar{z}^2} \quad |z|7|$$

Using the contour integration method.

6

- b) Briefly, describe the Architecture of ADSP processor.
- 9. a) Consider a periodic signal

$$x(t 1 = \begin{cases} 1 & 0 \le t \le 1 \\ -2 & 1 < t < 2 \end{cases}$$

With a period T = 2. The derivative of this signal is relate to impulse train

$$g(t1 \qquad &(t \quad 2\frac{1}{2})$$

With a period T = 2. It can be shown that

$$\frac{dx(t)}{dt} = A_1 g(t - t_1) + A_2 g(t - t_2)$$

5

Determine the values of A_1 , t_1 , A_2 and t_2

b) Describe Matched Z-transformation methods for design of IIR filter.

5

.....)..End.....