Roll No.	
----------	--

Total No. of Pages: 02 Total No. of Questions: 09

B. Tech. (ECE, ETE) (Sem.-5th, 6th)

MICROWAVE AND RADAR ENGG

Subject Code: BTEC-601 Paper ID: [A2315]

Time: 3 Hrs.

Max. Marks: 60

(10x2=20)

INSTRUCTIONS TO CANDIDATE:

- 1. Section-A is compulsory.
- 2. Section-B Attempt any four questions.
- 3. Section-C Attempt any two questions.

SECTION-A

- **Q. 1.** Answer the following:
 - What are the limitations of conventional tubes?
 - What are the advantages of crossed field amplifiers? (b)
 - (c) Write down the role of delay line cancellers?
 - What are the limitations of BWO? (d)
 - Write down ferrite devices and their properties (e)
 - Discuss the characteristics of varactor diode (f)
 - (g) What rat race junction?
 - (h) Why TEM waves are not propagated in waveguides?
 - (i) What are skin effect losses
 - (j) What are the properties of parameters?

SECTION-B

(4x5=20)

- What do you understand by linear beam tubes (O type). Explain the working principle of Q. 2. **BWO**
- Explain Faraday rotation in ferrite with the help of isolator construction and operating principle. O. 3.
- Write the performance characteristics and limitation of microwave transistors with respect to Q. 4. current, voltage and power.
- Q. 5. Derive RADAR range equation and explain the factors that aftect maximum range of RADAR.
- Explain canonical scan tracking RADAR system with the help of block diagram.

Page: 1

M-71121

SECTION-C

(2x10=20)

- Q. 7. (a) Draw the block diagram of pulsed RADAR system and explain functions of each building
 - (b) Calculate maximum range of RADAR system which operates at 3 cm with P_t =600KW, $S_{min}=10^{-13}W$ and $A_e=5m^2$ where $\sigma=20m^2$.
- Explain PIN diode with the help of zero bias, reverse bias and forward bias. Also explain Q. 8. its application as a switch, amplitude modulator and phase shifter.
- An X-band pulsed cylindrical magnetron has the following operating parameters: **Q**. 9.

Anode voltage

: $V_0 = 26KV$

Beam current

Magnetic flux density

Radius of cathode cylinder

Radius of vane edge to centre :

Compute:

- (a) The cyclotron angular frequency
- (b) The cut-off voltage for a fixed B_0
- (c) The cut-off magnetic flux density for a fixed \boldsymbol{V}_{0}

....END....