Roll No.

Total No. of Pages: 02

Total No. of Questions: 09

B.Tech.(CE/ECE/Electrical & Electronics/Electronics & Electrical/ ETE)/(Electronics & Computer Engg.)(2011 Onwards)

B.Tech. (Electrical Engineering & Industrial Control)/Electronics Engg. (2012 onwards) (Sem.-3)

ENGINEERING MATHEMATICS-III

Subject Code: BTAM-301 Paper ID: [A1128]

Time: 3 Hrs.

Max. Marks: 60

INSTRUCTION TO CANDIDATES:

- 1. SECTION-A is COMPULSORY consisting of TEN questions carrying TWO marks each.
- 2. SECTION-B contains FIVE questions carrying FIVE marks each and students has to attempt any FOUR questions.
- 3. SECTION-C contains THREE questions carrying TEN marks each and students has to attempt any TWO questions.

SECTION-A

l. Write briefly:

- (a) Find, L $(4^t + t \sin t)$.
- (b) State and prove the change of scale properties of Laplace transforms.
- (c) Find the residue at z = 0 of $f(z) = z \cos \frac{1}{z}$.
- (d) State any one important property of analytic functions.
- (e) State the three possible solutions for the Heat equation,

$$\frac{\partial u}{\partial t} = C^2 \frac{\partial^2 u}{\partial x^2}$$

- (f) Write the formulae for finding the half range cosine series for the function f(x) in the interval (0,2).
- (g) State Dirichlet's conditions for the expansion of f(x) as a Fourier series in the interval $(0, 2\pi)$.

- (h) Expand e^z in Taylor's series about the point z = a.
- (i) Form the partial differential equation from, $(x a)^2 + (y b)^2 = z^2 \cot^2 \alpha$ where α is a parameter.
- (j) Write the solution of the differential equation, $P_0(x)$ y" + $P_1(x)$ y' + $P_2(x)$ y = 0, when the roots of the indicial equation are equal.

SECTION-B

- 2. Solve $y''' 3y'' + 3y' y = t^2e^t$ where y(0) = 1, y'(0) = 0 and y''(0)using Laplace transforms.
- 3. Expand, $f(z) = \frac{1}{(1-z)(z-2)}$ in Laurent's series valid for the regions,

(i)
$$1 < ? z ? < 2$$

(ii)
$$|?|z|?| > 2$$

- 4. Find the Fourier series of, $f(x) = x + x^2$ in the range $[-\pi, \pi)$.

 5. With usual notation prove that $X_1(x) = \sqrt{\frac{2}{\pi x}} \sin x$. 5. With usual notation, prove that,
- 6. Solve the partial different equation, $(y + zx)p (x + yz)q = x^2 y^2$.

- 7. Use the concept of residues to evaluate, $\int_0^{2\pi} \frac{dx}{a + h \sin x'} a > h.$
- 8. A string of length l is stretched and fastened to two fixed points. Find the solution of the one dimensional wave equation when initial displacement,

$$y(x, 0) = f(x) = b \sin \frac{\pi x}{l}$$
.

9. Solve in series, $x \frac{d^2y}{dx^2} - 3 \frac{dy}{dx} + xy = 0$.