Roll No.

Total No. of Pages: 02

Total No. of Questions: 09

B.Tech.(ECE) (2011 onwards Elective-I) / (ETE) (E-I 2011 onwards)

(Sem.-6)

INFORMATION THEORY & CODING

Subject Code: BTEC-907
Paper ID: [A2395]

Time: 3 Hrs.

Max. Marks: 60

INSTRUCTION TO CANDIDATES:

- 1. SECTION-A is COMPULSORY consisting of TEN questions carrying TWO marks each.
- 2. SECTION-B contains FIVE questions carrying FIVE marks each and students has to attempt any FOUR questions.
- 3. SECTION-C contains THREE questions carrying TEN marks each and students has to attempt any TWO questions.

SECTION-A

l. Write briefly:

- a. What is the condition for the entropy of the source to attain its maximum value?
- b. Define source information rate.
- c. State Shannon's source coding theorem.
- d. A typical voice communications channel has a bandwidth of 3.1 kHz (300 Hz 3400 Hz) and S/N as 30 dB. Calculate the maximum channel capacity.
- e. Specify the algorithm for Lempel-Ziv source coding.
- f. What is meant by the syndrome word?
- g. Draw a suitable diagram depicting a simple operation of an algebraic cyclic coding technique.
- h. List the basic parameters that describe the BCH code.
- i. How is convolution code different from linear block code?
- j. Does ARQ mechanism rely on the use of an error detection code such as the Cyclic Redundancy Check (CRC)? Where does it find application?

IM - 71236]

SECTION-B

- 2. A communication system consists of six messages with probabilities 1/4, 1/8, 1/8, 1/8, and 1/4, respectively. Determine the entropy of the system.
- 3. Consider an alphabet of a discrete memoryless source having five source symbols with their respective probabilities as 0.1, 0.2, 0.4, 0.1, and 0.2. Create source codeword for each symbol using Huffman source coding algorithm.
- 4. Hamming codes are a family of (n, k) block error-correcting codes. Compute the Hamming code for the given data bits 00111001.
- 5. Using the generator polynomials $g_1(x) = 1 + x + x^2$ and $g_2(x) = 1 + x^2$, draw the convolution encoder. What is its code rate?
- 6. Describe the operation of Go-back-N ARQ strategy.

SECTION-C

- 7. State and prove Shannon's channel capacity theorem. What is its significance?
- 8. For the convolution encoder shown in Figure below, draw the Trellis diagram.

Stop-and-Wait Automatic Repeat Request (ARQ) adds a simple error control
mechanism to the Stop-and-Wait strategy. Explain how this protocol detects and
corrects errors. Also suggest the ARQ mechanisms more suitable in a noisy
environment.