Roll No. Total No. of Pages: 02

Total No. of Questions: 09

B.Tech.(Electronics Engg.) (2012 onwards)

(ECE)/(EE) (Electrical & Electronics)

(Electronics & Computer Engg.)/(Electronics & Electrical)/(ETE) (2011 onwards)

(Electrical Engineering & Industrial) (2012 Batch)

(Sem.-4)

LINEAR CONTROL SYSTEMS

Subject Code : BTEE-402 Paper ID : [A1188]

Time: 3 Hrs.

Max. Marks: 60

INSTRUCTION TO CANDIDATES:

- 1. SECTION-A is COMPULSORY consisting of TEN questions carrying TWO marks each.
- 2. SECTION-B contains FIVE questions carrying FIVE marks each and students has to attempt any FOUR questions.
- 3. SECTION-C contains THREE questions carrying TEN marks each and students has to attempt any TWO questions.

SECTION-A

l. Write briefly:

- (a) Write in short the effect of feedback on sensitivity of control system.
- (b) Define open loop and closed loop control system. Give examples.
- (c) Define transfer function and characteristic equation of a control system, with the help of an example.
- (d) Write the expressions for angle of asymptotes and centroid in root locus.
- (e) Define different types of compensating techniques.
- (f) Compare continuous and discrete control systems. Give examples.
- (g) What is State Transition Matrix? Write its various properties.
- (h) Define gain cross over frequency and phase cross over frequency and relate them with stability of a system.
- (i) Make analogous table for rotational mechanical system and series RLC circuit.
- (j) Define various static error coefficients.

SECTION-B

- Find the time response specifications for a unity feedback control system having open loop transfer function as $\frac{144}{s(s+2)}$.
- 3. Write short note on ac servomotors.
- 4. Explain various frequency domain specifications.
- 5. Determine the range of K for the system to be stable using R-II criterion. The characteristic equation is $s(s^2 + 2s + 3)(s + 2) + K = 0$.
- 6. Find the overall transfer function for the following signal flow graph

SECTION-C

7. Draw Nyquist criterion and discuss stability for the following system:

$$G(s) = \frac{1}{s(1+2s)(1+s)}$$

- 8. Explain and discuss in detail the various steps to draw a root locus. Also discuss its various applications.
- 9. For a closed loop control system, $G(s) = \frac{K}{s(s+4)(s+10)}$. Draw Bode Plot. Find K when GM is equal to 10 dB.