Roll No.

Total No. of Pages: 02

Total No. of Questions: 09

B.Tech. (Electronics Engg.) (2012 Onwards)
B.Tech. (ECE/ETE) (2011 Onwards) (Sem.-4)
ELECTROMAGNETICS AND ANTENNAS

Subject Code: BTEC-403
Paper ID: [A1191]

Time: 3 Hrs.

Max. Marks: 60

INSTRUCTION TO CANDIDATES:

- SECTION-A is COMPULSORY consisting of TEN questions carrying TWO marks each.
- 2. SECTION-B contains FIVE questions carrying FIVE marks each and students have to attempt any FOUR questions.
- 3. SECTION-C contains THREE questions carrying TEN marks each and students have to attempt any TWO questions.

SECTION-A

1. Write briefly:

- a) What is meant by virtual height in radio wave propagation?
- b) What is need for an antenna array? Distinguish: Broadside and End fire array.
- c) Define phase centre of a horn antenna.
- d) Outline the principle of working of a phased array.
- e) Outline the properties of a uniform plane wave.
- f) State Babinet's principle and specify where it is applied.
- g) Under what circumstances duct propagation will be effective? Give reasons for your answer.
- h) What is distortion less condition?
- i) Write Maxwell's Equation in integral form.
- j) Define Polarization.

SECTION-B

- 2 Derive the Maxwell's equations from Faraday's law of Electromagnetic induction.
- 3 Discuss in detail the effects of earth's magnetic field on ionospheric radio waves.
- 4 Show that the directivity of a half wave dipole is 1.644.
- Write short note on Smith Charts.
- 6 Discuss the different types of feed systems used in conjunction with parabolic reflectors.

SECTION-C

- 7 State Poynting's Theorem and derive the expression for Poynting vector.
- 8 Describe the following with respect to the propagation of radio waves:
 - a) Skip Distance
 - b) Critical Frequency
- Obtain the excitation coefficients of a nine element binomial array.