Roll No.

Total No. of Pages: 02

Total No. of Questions: 09

B.Tech.(ECE)/(ETE) (2011 Onwards)
B.Tech.(Electronics Engg.) (2012 Onwards)
(Sem.-5)

DIGITAL COMMUNICATION SYSTEM

Subject Code: BTEC-501 Paper ID: [A2103]

Time: 3 Hrs.

Max. Marks: 60

INSTRUCTION TO CANDIDATES:

- SECTION-A is COMPULSORY consisting of TEN questions carrying TWO marks each.
- 2. SECTION-B contains FIVE questions carrying FIVE marks each and students have to attempt any FOUR questions.
- 3. SECTION-C contains THREE questions carrying TEN marks each and students have to attempt any TWO questions.

SECTION-A

1. Write briefly:

- a) What is Nyquist rate?
- b) With diagram define the term Aliasing.
- c) What is Granular noise in Delta modulation?
- d) For the binary bit stream 10011011, draw the wave forms for Polar NRZ and Manchester RZ format.
- e) Write desirable properties of line codes.
- f) Draw power spectrum of BPSK and QPSK signals.
- g) What is the relation between BER and SYMBOL error rate?
- h) Why MSK is called shaped QPSK?
- i) Write the basic difference between Bandpass transmission and Passband transmission.
- j) What is the difference between Line coding and source coding?

1 | M-70545

(\$2)-1883

SECTION-B

- 2. State and prove the sampling theorem in frequency domain. Show that the effect of sampling is to produce double sided spectra around each harmonic of sampling frequency.
- 3. A DMS X has four symbols x_1 , x_2 , x_3 , x_4 with probability P $(x_1) = \frac{1}{2}$, P $(x_2) = \frac{1}{4}$, P $(x_3) = \frac{1}{4}$, P $(x_4) = \frac{1}{8}$. Construct a Shannon-Fano code for X; Show that this code has the optimum property that $n_i = I(x_i)$ and the code efficiency is 100 percent.
- 4. Why MSK is called shaped QPSK? For MSK, explain expression and wave forms for the signal 11000111.
- 5. Derive an expression for signal to quantization noise ratio for a PCM system which employs Uniform quantization technique. Input to the PCM system is a sinusoidal signal.
- 6. Show that Error probability of PSK system is $P_e = \frac{1}{2} erfc \sqrt{\frac{E}{N_0}}$

SECTION-C

- 7. Explain Delta modulation in detail with suitable diagram. Explain ADM and compare its performance with DM.
- 8. Explain QPSK system with its transmitter, receiver and signal space representation.
- 9. Draw block diagram of a Matched filter receiver and prove that output of matched filter is $r(T) = \frac{2k}{N_0} \int_0^T f(t)x(t)dt$.