Roll No.

Total No. of Pages: 02

Total No. of Questions: 09

B.Tech.(Electronics Engg.) (2012 Onwards)
B.Tech (ECE/ETE) (2011 Onwards) (Sem.-5)

DIGITAL SIGNAL PROCESSING

Subject Code: BTEC-502 Paper ID: [A2104]

Time: 3 Hrs.

Max. Marks: 60

INSTRUCTION TO CANDIDATES:

- SECTION-A is COMPULSORY consisting of TEN questions carrying TWO marks each.
- 2. SECTION-B contains FIVE questions carrying FIVE marks each and students have to attempt any FOUR questions.
- 3. SECTION-C contains THREE questions carrying TEN marks each and students have to attempt any TWO questions.

SECTION-A

1. Write briefly:

- a) What is autocorrelation and cross correlation?
- b) State whether the system whose impulse response is given by $h(n) = 4^n u(n)$ is stable or unstable.
- c) Give the properties of linear time-invariant discrete time system.
- d) Give the relation between Z-transform and discrete fourier transform (DFT).
- e) What do you mean by 'Twiddle factor' of DFT & show how it is cyclic?
- f) What are the advantages of bilinear transformation method for the design of IIR filter?
- g) What are the three quantization errors due to finite word length registers in digital filters?
- h) What are the advantages of representing a digital filter in the block diagram form?
- i) What do you mean by symmetric and anti symmetric FIR filters?
- j) Write the desirable features of DSP processors.

1 | M-70546

(\$2)-1884

SECTION-B

- Determine the Z-transform of the signal $x(n) = (-1)^n 2^{-n} u(n)$. 2.
- Discuss Linear filtering approach for the computation of DFT. 3.
- The system function of the analog filter is given as $H_a(S) = \frac{s+0.1}{(s+0.1)^2+16}$ 4.

Obtain the system function of IIR digital filter by using bilinear transformation method Kess. Coll which is resonant at $\omega_r = \frac{\pi}{2}$.

5. A LTI system is characterized by the transfer function:

$$H(z) = \frac{3 - 4Z^{-1}}{1 - 3.5Z^{-1} + 1.5Z^{-2}}$$

Determine the h(n) for the following conditions:

- a) The system is stable.
- b) The system is causal.
- Obtain the direct form 1, cascade & parallel structure for the following system 6. y(n) = 0.7 y (n-1) - 0.12 y (n-2) + x (n-1) + x (n-2).

The desired frequency response of a low pass filter is 7.

$$H_{a}(\omega) = \begin{cases} e^{-j5\omega}, & -5\pi/4 \le \omega \le 5\pi/4 \\ 0, & 5\pi/4 < |\omega| \le \pi \end{cases}$$

Determine $H(e^{w})$ for M = 11 using a Hamming window.

- With the help of N = 8, explain radix-2 decimation-in-frequency (DIF) FFT algorithm for 8. computation of DFT. Give the computational efficiency of FFT over DFT.
- 9. Write short note on the following:
 - a) Fixed and floating point representation of numbers
 - b) Architecture of ADSP series of digital signal processors